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Random Walk in Random Environment: 
A Counterexample without Potential 

Maury Bramson l 
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We describe a family of random walks in random environment which have 
exponentially decaying correlations, nearest neighbor transition probabilities 
which are bounded away from 0, and are subdiffusive in any dimension d < or. 
The random environments have no potential in d >  2. 

KEY W O R D S :  Random walk; random environment; subdiffusive; exponen- 
tially decaying correlations. 

1. I N T R O D U C T I O N  

Random walks in random environment have been the subject of 
considerable attention in recent years. Yet, few rigorous results are known 
about the behavior in dimensions d >  1. it has been shown in a momentous 
forthcoming article ~t~ that under independent environments and 
appropriate symmetry conditions, the mean square displacement will be 
asymptotically linear in time with the scaled distribution approaching that 
of a normal. It is believed that for models with short-range correlations, 
the mean square displacement also grows linearly. r 6) In ref. 7, a family of 
models having spatially homogeneous random environments with exponen- 
tially decaying correlations and nearest neighbor transition probabilities 
which are bounded away from 0 was introduced. The random walks on 
these environments were shown to be subdiffusive in any dimension d <  0o. 
The environments in this family all possess potentials. The models were 
therefore met with some reservations as valid counterexamples. 

The purpose of this article is to construct a family of models with the 
same features as above, but where the associated random environments do 
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not possess potentials (for d >  1 ). These models are obtained by perturbing 
the environments in ref. 7 by independent environments so that the random 
walks retain their subdiffusive behavior. A major part of the construction 
and proof for these models resembles that in ref. 7; the reader is referred 
there for additional background. 

The models considered in ref. 7 are a special case of random walk on 
a random hillside. In these systems, one starts with a random function 
V: R d--} R (the hillside or potential), defines 

~(x, y) = exp[ - fl V((x + y)/2)~ 

for x, y G Z  d with [ x - y [ = l ,  and for convenience 
otherwise. The ~(x, y) are nonnegative, so if we let 

(1) 

sets ~(x, y ) = 0  

and 

then 

Y 

p(x, y)= or(x, y)/ct(x), 

p(x, y) >1 0 and ~ p(x, y) = ~, 
Y 

i.e., p is a transition probability. From p one constructs a random walk in 
random environment in the usual way: if X(n)= x (that is, the particle is 
at x at time n), then the probability it will jump to y at time n + 1 is 
p(x, y) and is independent of what happened before time n. The reader 
should note that the definition of p is unchanged if we replace ~ by 

07(x, y ) = e x p {  - f l [V ( ( x+  y ) / 2 ) -  V(x)] }, (2) 

since the extra factor will cancel when one normalizes. The value of p(x, y) 
therefore depends only on the increments V((x + . ) ) -V(x ) .  Assume that 
X(0) = 0. 

To construct the potential V used in ref. 7, let k(z), z ~ Z  u, be 
independent random variables with 

P[k(z) = 0] = 1 - 6, 
(3) 

P[k(z)=k]  = & ( l - e )  k-~, k =  1, 2 ..... 

We abbreviate these probabilities by Pk. Here 0 < 6 < 1 and 0 < e<~ 1/2. 
One may think of V as being the surface of a (random) moon, with k(z) 
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giving the radius of the crater centered at z. If one lets Ix] = Ixjl + "-- + lXdl, 
then the function 

Ok(x) = min{ Ixl - k, 0} (4) 

gives the depth of the (square) crater of radius k centered at 0. Define the 
surface of our moon by 

V(x) = min (pk(~(x - z), (5) 
z 

where the minimum is taken over z in Z d. 
We note that V as defined here has slope ~< 1, and so, on account 

of (2), 

p( x, y) >1 e - t3/2/2det~/2 = (2de ~) i (6) 

for I x -  Yl = 1. From the above definition it is clear that the increments in 
V have exponentially decaying correlations. The following result from ref. 7 
shows that random walks in these environments are subdiffusive. 

TheoremA.  Suppose that 0 < 6 < 1 ,  0<~:~<1/2, and N>0.  If 
f3~>2(N+d+ 1), then 

P[maxlX(jjl>~nJ/N]--*O as n ~ o o  (7) 

The random walk X(n) has been constructed from the random poten- 
tial V(x). The presence of this potential can be thought of as placing a long- 
range constraint on p(x, y). One can therefore consider this random walk 
as having a "random potential" rather than a "random force." One can, 
however, modify this example to a random walk Y(n) on Z '1 with 
probabilities p'(x, y) constructed in terms of ct'(x, y) in place of 7(x, y) as 
above. Set 

~t'(x, y ) =  e x p { - f l [ V ( ( x ,  y ) / 2 ) -  V(x)+ W(x, y) ]}  (8) 

for [ x - y l  = 1, where W(x, y) are random variables (which are not 
necessarily independent). Then, as above, set 

c((x) = ~2 ct'(x, y) (9a) 
Y 

and 

p'(x, y)= e'(x, y)/e'(x). (9b) 
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Of course, 

p'(x, y)>>.O and ~ p'(x, y)= ~. 
Y 

Note that if 0 ~< W(x, y) <<. M for all x, y, then 

p'(x, y)>~e t~Mp(x, y)>~(2de I~;(M'~ ~)) ~ (10) 

We denote by Y(n) the random walk in random environment corre- 
sponding to p'. Except when specified otherwise, Y(0)= 0 is assumed. 

We prove the following analog of Theorem A. 

T h e o r e m 1 .  Suppose that 0 < 6 < 1 ,  0 < ~ 4 1 / 2 ,  and N > 0 .  If 
~ Cd(N+ l}/e, for appropriate C, and 0 4  W(x, y)41 /4 ,  then 

P[maxlY(.i}l>~nl/N]~O as n ~ 'J~. ( l l )  
j~n 

The process Y(j) has the properties we desire. As before, {p'{x, y): 
i x -  3'[ = 1 } is bounded away from zero. If W is independent of V and has 
exponentially decaying correlations, so does V '=  (V, W). Of course it is 
easy to choose W so that ~' has no potential if d >  I (e.g., W(x, y) i.i.d, for 
I x - ) ' [  = 1 and (x, y)~(x ' ,  y') will suffice). 

2. D E M O N S T R A T I O N  OF T H E O R E M  1 

One can prove Theorem 1 by using an argument similar to that for 
Theorem A. For X(n), the basic plan was motivated by the guess that the 
largest crater a particle falls into before leaving the ball of radius r is of 
order c log r, where c = - 2 / l o g ( 1 - e )  for d >  1. (X(n) should visit on the 
order of r 2 sites before leaving the ball.) The time it takes to climb out of 
this crater is of order eaCl~ = r e'. Inverting, one obtains (7), although one 
actually needs the somewhat stronger assumption fl >/2(N+ d +  t). For 
Y(n), with 0 ~< W(x, y)<~ 1/4, the effect of W is compensated by choosing 
fl >1 Cd(N+ 1 )/e. The particle will tend to fall into the same size craters 
given by V as before; increasing fl increases the "pull" of a crater enough 
to offset W. 

The proof of Theorem 1 is organized as follows: Lemma 1 and 
Proposition 1 will give lower bounds on the rate a particle tends to fall into 
a crater. They correspond to the like-labeled statements in ref. 7. Once it is 
in a deep crater, we wish for the particle to remain trapped there for a 
substantial time. Proposition 2 of ref. 7 expresses the time to climb out of 
a hole (perhaps consisting of many craters) in terms of the equilibrium 
measure r corresponding to p(x, y); the presence of the potential V 
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allows one to compute c~(x). The equilibrium measure for Y(n) is not, 
however, computable in terms of V'. (This measure will not in general be 
"close" to ~(x).) So the approach employed in ref. 7 will not work here. We 
give a different argument in Propositions 2 and 3. Theorem 1 is then shown 
using Propositions 1-3. 

We continue to use the notation employed in Section 1. We define q~, 
V', ct', and p' as before. Denote by ~ "  the a-algebra generated by V'. As 
usual, g2 will denote the probability space and co its elements. 

Set B(r)= {xe  Za: Ixt < r}. As r increases, B(r) will with high proba- 
bility contain deeper and more numerous craters. A particle executing the 
motion Y(n) should on occasion fall into such deep craters. To be more 
explicit, introduce ai and bi with 

a i=  [ log/I ,  bi=a3+ ... +ae, (12) 

for i~> 3, with [w] denoting the integer part of we Z. From b~, define the 
sets 

Bi= {x~ Za: [xl <bi} (13) 

and A~=B,-B~ ~. By 0B~, we mean those x e Z  a with d i s t ( B , , x ) = l .  
Since we are unable to say much about the motion of Y(n), crude 
arguments regarding the placement of deep craters are required. In 
Proposition 1, we give a lower bound on the probability that before leaving 
B~, Y(n) falls at least to depth at in a prescribed manner. Although this 
probability is small, it is not too much smaller than p~,, and the event will 
occur with probability close to one for some Bi satisfying B(r/4)<~ B~<<, 
B(r/2), if r is large. 

We will find it useful to define 

A(x) = {z: V(x)} 

if V(x)<0.  We will then say that "x is influenced by A(x).'" Note that 
A(x)r  and that for [ y - x f  = 1, V(y)=  V ( x ) -  1 iff ]y-z]  = ] x - z l -  1 
for some z eA(x). In this case, A(y )~  A(x). 

k e m m a  1. Fix V, h, and Xo, and suppose that Xo is influenced by A 
with dist(A, xo) ~> h. For/~ 1> 4 log 6d, 0 ~ W(x, y) <~ 1/4, and Y(0) = xo, 

P[  V(Y(j)) = V(Y(O)) - j ,  j =  I,..., hi  ~> (3/4)". (14) 

ProoL Let g2,~ denote the set of paths (Xo ..... x,,) (i.e., I x j -  X~ ~1 = 1 ) 
with V(x~)=V(xo)-  j for j = l  ..... m. For given (Xo,...,xm ~)e.~m 1, 
m <~ h, let 

B =  {x,.: (xo  ..... 

Since xo is influenced by A and dist(A, xo) >/h, B is not empty. 
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Note that 

So 

On the other hand, 

V(x,,,)>~ V(x,, -I) if xmr  

u'(xm ~, x,.)~< I if x, .r  B. 

o((x,, i, Xm) >>- e/t/4 if xm e B. 

Therefore, if fl ~> 4 log 6d, 

p'(Xm ~, X,,) >t ]BI e/~/4/(2d + I B[ e "/4} >f 3/4. 
~me B 

Inequality (14) follows by induction. | 

We will find it convenient to introduce two variants of V(x). Let 

Vi(x) = rain q~k(zl(x - z), 
~e, (15) 

~',(x) = Vi(x) ^ (dist(0B,, x ) -  a,). 

V~(x) measures the potential at x by ignoring the effect of craters outside 
Be; V;(x) measures the resulting potential if one in addition includes the 
effect of a crater of depth a~ at a site z ~ OB~ with 

lz - xi = dist(0Bi, x). (16) 

Equations (15) are used in Proposition 1 in the context of o~ (defined 
below). Also, for Proposition 1, let 

T~ = rain{n: [ Y(n)] = b~} (17) 

and 

(7i= T i A min{n:lY(n)l  >b,  l, V , ( Y ( n ) ) r  Vi(Y(n})}, 
(t8} 

ri = min{n: V(Y(n))  <~ -a~}. 

(If a set is empty, assign the value oc.) The quantity inside rain{. } in the 
definition of ~r~ is the first time at which Y visits a site in the annulus As 
which would be influenced by a crater of depth a~ at a site z ~ OB i (if it is 
not already influenced by a yet deeper crater outside B;). Note that under 
fixed V', these are all stopping times. Lastly, define 

Gi= {o~: ~;~< ~,) I19) 
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and 

~.=a(G1,...,G~), ~e~=a(V, W, {Y(n):n<~ai}). (20) 

G~ is the event that Y has fallen deeply into a hole before leaving B~ = 
B t ~ OBj. It is easy to check that if,._ ~ c V~. 

Proposition 1. For Gg, ff, i as defined in (19)-(20) and 
/~ >t 4 log 6d, 

P [ G i  J ~ / - I  ] ~ 6/~(3(1 -- e)/4) ~'. (21) 

The proof of Proposition 1 is identical to that in ref. 7, and is omitted. The 
main idea is that since Y conditioned on ~ '  is a Markov chain, one can 
apply the strong Markov property to Y at time a~. One can check that 
either V(Y(a~)) ~< .--ai, which implies ~o e G,., or a~ ~< T~. Choose Z~ so that 
IZil = b i and 

JZ, -  Y(a,)f = b~- J Y(ai)l. (22) 

On 

K, = {e): k(Zi) = ai}, 

X(a,) is influenced by Zi or some other point not in B~. So one can apply 
Lemma 1 to show that on Ki, 

P[ G,I ~/;] >1 (3/4)"'. 

One can check that 

Therefore, 

P[G,i~.r 

P[K,I~.a,. ,] = 6~:(I - ~ )  ~' : 

, ] />  E[1 , ,  P [ C ,  I~;]1~.r , ] >t 6~:(3(1 - ~:)/4)",. 

In Proposition 1, we gave a lower bound on the probability that Y(n) 
falls at least to depth a, before leaving Bi. In (23) of Proposition 2, we give 
a lower bound on the time required for Y(n) to rise from a given depth 
under certain regularity assumptions involving the size of nearby craters. 
(These assumptions ensure that the motion of a particle is locally 
influenced by only a single crater, which allows a simple computation of 
the bound.) This provides the upper bound in (24) on how far Y(n) can 
move by a given time. After the regularity assumptions are examined in 
Proposition 3, Proposition 1 and (24) will be applied to demonstrate 
Theorem I. 
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Proposi t ion  2. Fix V so that V(0)~< - f  Also assume that (i) no 
craters of depth at least h intersect B =  {x: Ixl <2mh} and (ii) at most m 
craters of depth at least f/2 intersect B, where ~ h, m > 0, If Y(0) = 0, then 

and 

P[V(Y(j))~ - f /2forsomej<<,n]<~4dnexp{~(2-f)}  (23) 

P [max l Y(J)' >~ 2mh ] <~ 4dn exp {~ ( 2 - f  ) (24) 

for all n > 0. 

ProoL First note that on account of (i) and (ii), there are no paths 
connecting 0 with ~" which remain strictly below the level -.1"/2. For such 
a path must remain in the above m craters until reaching/~", whereas each 
such crater has diameter at most 2h. Consequently, (24) follows from (23). 

To demonstrate (23), consider the set E of those depths g >!y2 for 
which if .v~ B with V(x) = -g ,  then there is at least one neighbor y of x 
with l '( .v)= - g -  I. if g~E ,  then some x with V(x)= -g  is at the center 
of a crater. So, by (ii), 

Ige H": g > f/21 <~m. 

One can therefore choose an interval J=(go- f /2m,  go) with 
go~[f/2+f/2m, f ]  so that g~J implies that geE. That is, there is an 
unbroken sequence of depths at least f/2m long so that only perhaps the 
greatest depth go ~ E". 

We can now use a standard argument involving martingles. Set 

M(j) = exp { c( V(Y(j)) + go) }, (25) 

where c > 0 .  For x~J, there is at least one neighbor y with V(y)=  
V ( x ) - l .  For such y, ~'(x,y)>~e lu4, whereas for other neighbors, 
~'(x, y) ~< 1. So for Y(j) ~ B with V(Y(j)) ~ J, 

E[M(j+ I)IM(j)] e/U4e '+2de' <~ 
M(j) e tu4 + 2d 

one can check that for c = f l / 4  - log 2d, this equals 1.  Set 

M(j) = M(j) - ea/4j. 

The corresponding inequality 

E[)91(j + 1 )1 ~ ( j ) ]  <~ )l~r (26) 
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holds for Y( j )~B ,  V(Y( j ) ) eJ .  It is easy to check that for this value of c, 
(26) also holds for V(Y(j))<~ -go.  So ~r a supermartingale for j~< T, 
the first time at which V(Y(j))  >>. -go  + f/2m. 

Now, since V(0)~<-f,  ~Q(0)~<I. So by the Optional Sampling 
Theorem, 

E[~I(n/x T)] ~ 34(0) 4 1 

for all n. Consequently by Chebychev's inequality, 

P[T<~n] <~ e 'f/=mE[M(n /x T)] 

<~ (el~/4n + 1 )e ,:/~2,,, 

In the proof of Theorem 1, we will set 

1 h d +  1 10d 
f = ~ log r, = log r, m = (27) 

We will therefore need to establish upper bounds on the probabilities that 
conditions (i) and (ii) of Proposition 2 are violated for these values. This 
is done in Proposition 3. We set /~(r)= {x: Ix] <2mh}. We denote by H,. 
the set of V for which no crater of depth at least h intersects B(r) and by 
Fr the set of V for which there are at most m craters of depth at least .[j2 
which intersect B(r)+ x for all x e  B(r). Here, ./; h, and m are chosen as in 
(27) and + x  denotes translation by x. 

P r o p o s i t i o n  3, (i) P[H~] <~ C,/r and (ii) P[F'~] <~ C=/r for 
appropriate C~ and C2 depending on s and d. 

ProoL The left side of (i) is at most 

• (2 ( r+ [h ]+ j ) ) a&s(1 - -~ ) fh )+ /  
/ = 0  

/ ~ o  /=0  

The first term on the right side equals 

(28) 

( 8 r ) a ( l - e . ) f  hI I 

822/62/~-4~24 
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The second term is at most 

8ut:(l_t:)rhl  I ~ j ( j + l ) . . . ( j + d + l ) ( i _ c ) j  i 
1 = 1  

= d !  (8/~)'~(1 - c )  rhl I (29) 

Plugging in h = ( ( d +  1)/~)log r, one can check that their sum is at most 
Cl/r for appropr ia te  Ca depending on e and d. 

The left side of (ii) can be evaluated similarly. It is at most 

(2r),/ . . .  ~ (2(2mh+[f/2]+./i)),16~:(l_c)ll/21~j, 1 
/ I  = 0 [m "= 0 t "= 

( ,it, I ) ttl 
= (2r)U t y '  ( 2 ( 2 m h + [ . / ' / 2 ] + j ) ) ' ~ < $ ~ : ( 1 - c )  i l l 2 1 + '  . 

\ 1  0 

Reasoning as between (28) and (29) shows that this is 

<~ (2r)a{((16mh)a+d! (8/e)a)(1 _~)rs/2l ~,-, 
I " 

Plugging in f =  ~ log r and h = ( ( d +  1 )/~:) tog r, one can check that this is 

~< C'(log r)a"r a ,:m/S, 

where C' depends on 5, d, and m. For  m = lOd/~, this is clearly 

<~ C2/r 

for appropria te  C2 depending on e and d. il 

We now prove Theorem 1 by using Proposit ions 1-3 as sketched 
earlier. 

Theorern l .  Suppose that 0 < 6 < 1 ,  0 < ~ < 1 / 2 ,  and N > 0 .  If 
[~ >~ Cd(N + 1 )/~: for appropria te  C, and 0 ~< W(x, y) <~ 1/4, then 

P [ m a x  IY(J)l>~nl/N]--,O as n ~ o e .  (30) 
j<~n 

Proof, Fix r and set 

l=min{i:bi>.r/4 }, 

L = max{i :  bi < r/2 }. 

It is easy to check that for i ~ L, 

a,- <~ log r, (31) 
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and consequently 

/" r 
L - / ~ > - - -  1. (32) 

l >~ 4 log r '  4 log r 

Now, repeated application of Proposition 1 shows that 

P G' i <~ [ 1 - & ( 3 ( l - e ) / 4 ) " ' ] ~ < e x p  - 6e(3(1-e) /4)" '  . (33) 
t l i = l  i = l  

Plug in (31) and (32), and note that log(3(1 - e)/4) > -1 for e ~< 1/2. This 
shows that (33) is at most 

for large enough r and appropriate r/> 0. Setting G = U ~r we obtain 
from (33)-(34) that 

PIG"] <~ exp( - &r"). (35) 

We restrict our attention to Y(n) on G. On this set, 

z~<T, for some l<~i<~L. (36) 

Denote by I the first such i, and set Y/= Y(z~). From the definition of r 
and a, 

V(Y,) ~ - a ,  ~< - [ l o g  l ] .  (37) 

On account of (32), for r not too small, this is 

~< - �89 log  r. (38)  

We will denote by #v, the subprobability measure on B(r) induced by Y/ 
(restricted to G) for fixed V' and by Z(m)  a copy of X(m) with initial 
distribution given by ttz,. 

Now consider ~oE H r n F r .  We will plug Proposition 3 into (24) of 
Proposition 2 with f =  ~ log r, h = ( (d+ 1 )/e,) log r, and m = lOd/e, and with 
Y(0) = 0 replaced by Z(0 )=  Y/. It is not hard to verify that the conditions 
in Proposition 2 are satisfied. On account of (37)-(38), Z(0)~< - f .  Note 
that since YI~ B(r/2), 

B(r) + YI c B(r) (39) 
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for r not too small. Therefore, since V~Hr, it follows that (it of 
Proposition2 holds. Also, since VeF , ,  (ii) of Proposition 2 holds. So~ 
applying (24) and (39), we obtain 

{_~( ~: tog r ~  
P,,.[maxlZ(j)l>~rr'C/"]<~4dnexp 2 (4(I) 

j ~ ,, ' 20d / j 

for m e H r n F  r. 
The right side of (40) does not depend on V'. Setting n = r N with N 

fixed, one gets 

P,~.[max tZ(.j)t >~ r[:r 
i <  r N 

<~ 4delt/4rU fl,./16Od ~ C3/r (41) 

for/3 ~> 160d(N + 1)/~, where C3 does not depend on r. Conditioned on r 
the process Y is strong Markov. The strong Markov property therefore 
implies that 

P[max I Y(/)I >t r; G] Y/"] ~ C3/r 
/ ~ r  ~ 

for co e H, c~ F,.. Consequently, 

P[max j Y(j)] ~> r; G] "//"] ~< C3/r. 
j<~r N 

Together with (35) and Proposition 3, this shows that 

P[max ] Y(j)[ >~ r] ~< exp( - &r ~) + (C1 + C2 + C3)/r 
] ~ r  N 

-~0 as r -~ ctD. 

Inverting, one obtains 

P[maxlY(j)l>~nl/N]--*O as n--+oo. | 

(42) 
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